0.0 0人评分
字数:20.8万
点击:4.4万
分类: 数据库
标签:

用户还喜欢

  • 《数据库工程师》2016初春刊:SQL Server 2014升级

    《数据库工程师》2016初春刊:SQL Server 2014升级

    TechTarget中国

    本书重点关注大数据技术在企业的应用,帮助IT决策者挖掘数据价值、提升商业洞察。

  • Python与数据挖掘

    Python与数据挖掘

    张良均; 杨海宏 ;何子健;杨征

    本书主要分为两大部分,基础篇和建模应用篇。基础篇介绍了有关Python开发环境的搭建、Python基础入门、函数、面向对象编程、实用模块和图表绘制等基础知识。建模应用篇主要介绍了目前在数据挖掘中的常用的建模方法在Python中的实现函数,并对输出结果进行了解释,有助于读者快速掌握应用Python进行分析挖掘建模的方法。本书配套提供了书中使用的示例代码及所用的数据,读者可通过上机实验,快速掌握书中所介绍的Python的使用方法。

  • Python数据分析与挖掘实战

    Python数据分析与挖掘实战

    张良均等

    本书从实践出发,结合大量数据挖掘工程案例及教学经验,以真实案例为主线,深入浅出地介绍数据挖掘建模过程中的有关任务:数据探索、数据预处理、分类与预测、聚类分析、时序预测、关联规则挖掘、智能推荐和偏差检测等。因此,图书的编排以解决某个应用的挖掘目标为前提,先介绍案例背景提出挖掘目标,再阐述分析方法与过程,最后完成模型构建。在介绍建模过程的同时穿插操作训练,把相关的知识点嵌入相应的操作过程中。

  • 数据科学导论:Python语言实现

    数据科学导论:Python语言实现

    【意】阿尔贝托·博斯凯蒂(Alberto Boschetti);【意】卢卡·马萨罗(Luca Massaron)

    本书由两位资深数据科学家撰写,融合其多年从事数据科学相关的教学和科研工作经验,借助现有的Python语法和结构知识,全面而系统地讲解进行数据科学分析和开发的相关工具、技术和最佳实践,包含清晰的代码和简化的示例。通过阅读本书,你将深入理解Python核心概念,成为高效数据科学实践者。本书共6章,系统介绍了进行数据科学分析和开发所涉及的关键要素。书中首先介绍Python软件及相关工具包的安装和使用;接着不仅讲解数据加载、运算和改写等基本数据准备过程,还详细介绍特征选择、维数约简等高级数据操作方法;并且建立了由训练、验证、测试等过程组成的数据科学流程,结合具体示例深入浅出地讲解了多种机器学习算法;然后介绍了基于图模型的社会网络创建、分析和处理方法;最后讲解数据分析结果的可视化及相关工具的使用方法。

  • R语言数据分析与挖掘实战

    R语言数据分析与挖掘实战

    张良均等

    数据挖掘是从大量数据(包括文本)中挖掘出隐含的、先前未知的、对决策有潜在价值的关系、模式和趋势,并用这些知识和规则建立用于决策支持的模型,提供预测性决策支持的方法、工具和过程。数据挖掘有助于企业发现业务的发展趋势,揭示已知的事实,预测未知的结果,因此“数据挖掘”已成为企业保持竞争力的必要方法。

Python数据科学实践指南

Python数据科学实践指南纪路  著

本书分为三大部分,其中第1~4章是Python基础,这个部分会介绍阅读本书所必须掌握的Python知识。第5~7章是讲解Python直接提供的数据处理工具,这些工具包括一些易用的数据结构、标准库和第三方工具。第8~12章是一些实际的案例,将会涉及Python主要擅长的几个领域。后的三个附录分别介绍了关于Python的一些扩展知识。 [展开] [收起]

作者简介

纪路 先进设计与智能计算教育部重点实验室硕士,控制专业,研究生期间主攻机器人方向,对小众编程语言和机器学习有浓厚的兴趣。现在在一家大数据初创公司做数据挖掘工作,略通Python、Scala、JavaSciipt。由于有学术背景,并且熟悉多种编程范式,经常被委以算法研发的重任。主要负责计算广告相关的算法、社交网络数据挖掘,以及高性能分布式计算平台的开发工作。

评论

为该书打分

    Hi,,